Supplemental Box and Table

Box 3: Strategies for Dynamin Inhibition

Inhibition of dynamin function is an important research tool to explore the action of
this protein and the impact of endocytosis on a variety of cell processes. Methods to

inhibit dynamin function (and their limitations in red) are listed below.

+ Temperature sensitive(*) mutations. Acute functional disruption, fully reversible.
Dominant phenotype, possibly reflecting presence of mutant dynamin subunits in a
dynamin polymer. (The dominant negative effect may also include sequestration by
mutant dynamin of dynamin binding proteins and thus may reflect the disruption of

the function of such proteins).

+ Transfection of mutant dynamin. Excess mutant dynamin results in a powerful

dominant negative effect. (same limitations as for temperature sensitive mutations
(see above); the indirect effect due to the sequestration of dynamin binding

partners may be more robust due to mutant dynamin overexpression).

+ Micro-injection of anti-dynamin antibodies. Allows for acute functional disruption.

(Blocked proteins may sequester interacting partners).

+ Microinjection of dynamin binding SH3 domains. Acute effects due to competition

with endogeneous SH3 domain containing proteins for binding to dynamin’s PRD.



(Many such SH3 domains also bind other proteins thus limiting the specificity of the

method).

+ Microinjection of peptides from dynamin’s PRD to outcompete endogenous

dynamin for binding to physiological binding partners. (Since binding surfaces for
dynamin’s PRD, primarily SH3 domains, also bind other proteins, such peptides

block these other interactions as well.)

+ Microinjection of GTPYS, a slowly hydrolysable analogue of GTP to lock dynamin in

its GTP-bound conformation. (GTPyS will non-selectively inhibit other GTPases).

+ Pharmacological inhibition. Acute effect. (Most currently available drugs that

impair dynamin GTPase activity function non-competitively and by unknown
mechanisms. Off-target effects may occur. For example, the commonly used

dynasore compound also inhibits at least some other DLPs 1.

+ RNAi-mediated knock-down. (Only partial elimination of function. Robust knock

down of more than one dynamin isoform may be needed for effective loss of

function).

+ Global and conditional gene KO. Can provide information on role of dynamin

isoforms at the organismal level. (Negative impacts on development and viability

complicate the use of these methods).



Table 2: Dynamin Interacting Proteins

Dynamin Interacting Mechanism of interaction Reference
Protein
BAR Family
Amphiphysins 1 and 2 Binding of dynamin PRD to SH3 domain | *°
DNMBP1/Tuba, Binding of dynamin PRD to SH3 domains
Cdc42 GEF activity 7,8
Endophilins 1, 2 and 3 Binding of dynamin PRD to SH3 domain | "
GRAF1 Binding of dynamin PRD to SH3 domain | "
SNX9, 18 and 30 Binding of dynamin PRD to SH3 domain | 16-19
F-BAR Family
Synadpins 1 and 2 (aka Binding of dynamin PRD to SH3 domain | 20-23
PACSINs)
CIP4, FBP17, TOCA1 Binding of dynamin PRD to SH3 domain | ***
Nervous Wreck Binding of dynamin PRD to SH3 domain | 2627
Enzymes
Calcineurin PxIxIT motif in Dynamin 1b splice 3 Giovedi,
Ferguson and De
variant Camilli unpublished

observations.




c-Src,

Tyrosine kinase

Binding of dynamin PRD to SH3 domain

31,32

eNOS,

nitric oxide synthase

Dynamin PRD-eNOS reductase domain

33

PI3K p85 subunit, Binding of dynamin PRD to SH3 domain | *"**

Lipid kinase

PLCy, Binding of dynamin PRD to SH3 domain |

Phospholipase activity

Signaling

Adaptors/Scaffolds

Arc Via dynamin PH domain 37

CIN85 and CD2AP Binding of dynamin PRD to SH3 domain | 3839 and
Ferguson and De
Camilli
unpublished data.

Grb2 Binding of dynamin PRD to SH3 domain | *"*7*##

Homer 1 PxxF motif in Dynamin 3 PRD interacts 42-44

with EVH1 domain

Intersectin 1,

Cdc42 GEF activity (splice

Binding of dynamin PRD to SH3 domains

14,45-48

variant)
Nck Binding of dynamin PRD to SH3 domain | ¥
Nef, Binds selectively to the dynamin 2 !




HIV protein isoform via the middle and GED domains
SPIN90/WISH Binding of dynamin PRD to SH3 domain | 52
TTP Binding of dynamin PRD to SH3 domain | 53
Vavl, Binding of dynamin PRD to SH3 domain >
Rho GEF activity

Cytoskeleton

ABP1, Binding of dynamin PRD to SH3 domain | 55

Binds F-actin

Cortactin,

Binds F-actin

Binding of dynamin PRD to SH3 domain

56-58

F-Actin Actin filaments bound via middle 59
domain

Kalirin 12, IgFn domain interaction with dynamin 60

Rho GEF activity GTPase domain

Myosin 1E, SH3 domain-PRD interaction ol

Actin based motor

62-64

Microtubules Via dynamin PRD

y-tubulin Via middle domain 65
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